Prototyping and Debugging Realtime Interactive Systems with Augmented Reality

Steven Feiner

Computer Graphics & User Interfaces Lab
Department of Computer Science
Columbia University
New York, NY 10027

Work described in this presentation was supported in part by NSF, ONR, and gifts from IBM, Microsoft, Nokia, Synaptics, and Vuzix

SEARIS Workshop @ IEEE VR 2013, Orlando, FL, March 17, 2013
Overview

- Two uses of AR in development
 - AR as a prototyping tool
 - AR as a debugging aid
- One problem
 - (Sup)Porting systems across desktop and mobile environments
AR Prototyping: A Wrist-Worn Projection Display

G. Blaskó, F. Coriand, & S. Feiner, ISWC 2005
AR Prototyping: A Wrist-Worn Projection Display Gábor Blaskó, Franz Corian

- High-res, full color, bright, tracked... with integrated UI
AR Prototyping: A Wrist-Worn Projection Display
Gábor Blaskó, Franz Coriand

Wrist-mounted Touch Sensor

Orientation Tracker

Synaptics Touchpad
InterSense InertiaCube2 3D Orientation Tracker
AR Prototyping: A Wrist-Worn Projection Display

Wrist-mounted Touch Sensor

Orientation Tracker

Position Tracker

Origin Instruments Dynasight 3D tracker

Retroreflective marker
AR Prototyping: A Wrist-Worn Projection Display
Gábor Blaskó, Franz Corian

- Wrist-mounted Touch Sensor
- Orientation Tracker
- Position Tracker
- Generation of texture mapping coordinates (projected textures)
- Real-time rendering of simulated projection on wall

NEC WT600 short throw projector
Basic Simulation
Orientation-based Interaction
AR Prototyping: String-Based Interaction

G. Blaskó, C. Narayanaswami, & S. Feiner, CHI 2006
AR Prototyping: String-Based Interaction Gábor Blaskó

- 2D primary touchscreen display
- 1D secondary display with angle/length input
AR Prototyping: String-Based Interaction

Gábor Blaskó

Watch mockup contains badge reel

Retroreflective marker

Reel cable

Screen

Projector

Origin Instruments Dynasight 3D tracker

Cable
Stock Sector Overview

- Apple (AAPL)
- Dell (DELL)
- Hewlett-Packard (HPQ)
- IBM (IBM)
- SGI Inc (SGI)
- Sun Microsystems (SUNW)
Stock Sector Details on Demand
AR Debugging: Redirected Motion

O. Oda & S. Feiner, ISMAR 2009
AR Debugging: Redirected Motion

O. Oda & S. Feiner, ISMAR 2009
Now for the not so fun, ...
Supporting Desktops and Mobile Devices http://goblinknxna.codeplex.com

- Goblin XNA: Infrastructure for 3D UIs and AR, built on XNA
 - Scene graph interfaces to external physics, tracking, networking, cameras, HWDs, GUI…
 - Windows Desktops: 2008–
 - Windows Phones: 2012–
- Problem: Need to support external functionality across desktop and mobile devices without reinventing the wheel reimplementing
Supporting Desktops and Mobile Devices
http://goblinxna.codeplex.com

- **Implementation Differences**
 - **Development environment**
 - OS: Windows 7 vs. 8
 - Native machine vs. VM (GPU issues)
 - **Deployment environment**
 - OS: Windows vs. Windows Phone
 - Rendering: Texture aspect ratio, Shader capabilities, Silverlight,…
 - Mobile OS: Windows Phone 7.8 vs. 8
 - Hardware: Desktop vs. Phone, Real phone vs. emulator
 - **Mismatched “equivalent” APIs → Versionmania™**
 - Physics: Newton/Havok vs. Matali
 - Tracking: ALVAR vs. NyARToolKit
 - **License: BSD, MIT, GPL, LGPL,…**
 - Need for *internal-only* version of open-source system that uses GPL’d utilities, if all source not available (e.g., XNA)

NyARToolKit not on Codeplex
Supporting Desktops and Mobile Devices http://goblinxna.codeplex.com

- Example from 3DUI & AR course last week: “3D transformations aren’t working on the phone!”
 - Some students used physics for raycast picking
 - But, pickable objects then participate in physics
 - Phone physics implementation is missing support for non–physics-based transformation of objects in physics simulation… Uh oh!
 - Pickable objects don’t move when transformed
- Nothing that can’t be solved with full multi-platform regression testing (with inferencing of consequences)… 😊
How can we fix this?
Acknowledgments

- Gabor Blaskó
- Franz Coriand
- Carmine Elvezio
- Ohan Oda
- Mengu Sukan

Work presented here was supported in part by NSF, ONR, and gifts from IBM, Microsoft, Nokia, Synaptics, Vuzix

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.