
A Framework to Facilitate Reusable, Modular Widget Design
for Real-Time Interactive Systems

Carmine Elvezio ∗

Columbia University
Mengu Sukan∗

Columbia University
Steven Feiner∗

Columbia University

ABSTRACT

Game engines have become popular development platforms for
real-time interactive systems. Contemporary game engines, such as
Unity and Unreal, feature component-based architectures, in which
an object’s appearance and behavior is determined by a collection of
component scripts added to that object. This design pattern allows
common functionality to be contained within component scripts
and shared among different types of objects. In this paper, we
describe a flexible framework that enables programmers to design
modular, reusable widgets for real-time interactive systems using a
collection of component scripts.

We provide a reference implementation written in C# for the
Unity game engine. Making an object, or a group of objects, part
of our managed widget framework can be accomplished with just a
few drag-and-drop operations in the Unity Editor. While our frame-
work provides hooks and default implementations for common wid-
get behavior (e.g., initialization, refresh, and toggling visibility),
programmers can also define custom behavior for a particular wid-
get or combine simple widgets into a hierarchy and build arbitrarily
rich ones. Finally, we provide an overview of an accompanying
library of scripts that support functionality for testing and network-
ing.

Keywords: Widget, Framework, Modular, Component-based De-
sign, Augmented Reality, Virtual Reality, Unity

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies, Interaction styles; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
techniques

1 INTRODUCTION

Frameworks that support the creation of rich Realtime Interactive
Systems (RIS) often focus on integration and provide modules that
each handle specific aspects of the system (e.g., tracking, input, net-
working, and rendering) and can be combined in different ways to
provide custom-tailored solutions for heterogeneous computing en-
vironments (e.g., [2, 15, 13, 4, 17]). Using these frameworks, pro-
grammers can prototype and test UI elements. Additionally, many
of these frameworks allow the programmer to extend their baseline
functionality, following an object-oriented design pattern, often by
subclassing (i.e., inheriting from) the base classes of the framework.
Meanwhile, the entity–component–system architectural pattern has
become popular in game development [11, 21]. This pattern pro-
motes the principle of composition over inheritance. Every game
entity (referred to as a GameObject in Unity [18], and as a GO in
this paper) is added to the scene and placed in a scene graph. GOs
get their behavior or functionality from one or more attached com-
ponents. This allows the same functionality or behavior to be reused

∗e-mail: {ce2236, m.sukan, skf1}@columbia.edu

by different types of GOs. While this pattern provides a powerful
framework for the creation of sophisticated behavior, it is often left
to the programmer to manage the interaction between specific com-
ponents.

Widgets (collections of GOs that are reusable, modular, and
ready to communicate with each other) can require careful man-
agement by the programmer. For instance, imagine a scenario in
which the programmer would like to implement a widget that in-
structs the user to move a tracked physical prop from one point to
another. This could be communicated by using a bundle of simple
widgets; for example, by rendering virtual highlights at the begin-
ning and end points and a virtual arrow at the end point to indicate
a motion vector. To make this bundle of widgets more interactive,
the arrow could change size as the prop moves and the highlights
could change color based on the location of the prop.

While in development, the programmer may want to test another
bundle of widgets for the same task or swap one of the widgets
in the bundle with another widget (e.g., a virtual copy of the prop
that animates towards the end point instead of an arrow). There are
many scenarios in which the complexity of managing these wid-
gets and the bundles into which they are combined requires much
attention and care by the programmer. To help reduce this overhead,
we propose that programmers create modular, reusable widgets that
share a common program interface (i.e., are interchangeable in soft-
ware) and can be combined together to create arbitrarily complex
widgets via combinations. We present WF Toolkit, a toolkit that
centers around an extendible Widget Framework, which includes
software components that facilitate management of widget-related
components at runtime. In addition, our toolkit includes a user-
study–management component that supports rapid user testing and
assessment of widgets implemented with our framework.

2 PREVIOUS WORK

There has been much effort devoted to developing fully integrated
RIS application frameworks. Many of the early systems in this area,
some of which we describe below, provided a complete engine, sup-
porting rendering, networking, input, events, and integration of 3D
tracking systems, along with an expandable framework running on
that engine.

COTERIE [10], made it possible to develop distributed systems
through object-oriented data distribution, including a distributed
scene graph. Using COTERIE, MacIntyre and colleagues built a
library to support a range of displays and trackers, and developed
prototype augmented reality (AR) applications using head-worn
displays for maintenance and outdoor mobile AR [6].

Studierstube [15] was designed to support programmers in creat-
ing collaborative virtual and augmented environments, implement-
ing an architecture proposed earlier [8]. It emphasized annota-
tions and interactions designed for a two-handed pen-and-pad in-
terface. Studierstube was developed as a collection of C++ classes
built on top of Open Inventor [16] and featured a distributed scene
graph that enabled heterogeneous networked architectures includ-
ing head-worn displays and projectors. Other versions provided
support for mobile devices (backpack [14] and handheld [20]).

DWARF [2] was a modular, distributed, platform-independent
framework that allowed programmers to quickly prototype AR ap-



plications by modifying XML files to customize services that com-
municated through CORBA. Built-in services included tracking,
scene description, task flow, and UI.

MORGAN [13], introduced in 2004, was a distributed, modular
C++ library for building heterogeneous AR and virtual reality (VR)
applications. Its modules communicated through CORBA and in-
cluded a platform-independent render engine and a device abstrac-
tion layer for various input/output devices. One of the unique fea-
tures of MORGAN was its “External Scene Graph,” which used
plug-ins to map 3D scene information stored in various third-party
file formats onto its own internal representation.

ARCS [4], a more recent modular framework, supports integra-
tion of exogenous modules with endogenous modules (e.g., track-
ing, rendering, and input systems). ARCS allows programmers to
extend existing module types, define new module types by utiliz-
ing the abstract module design, and define relationships between
modules through explicit (defined by the programmer) and implicit
(defined by object initialization) communications. The framework
also supports the creation of complex compound modules, which
can then be integrated into larger workflows though macros.

GoblinXNA [12] and Bespoke [19] were similar frameworks
built on the XNA platform [22], with support for integration of
external tracking and input systems. In addition, both provided
a scene graph that, in combination with XNA and C#’s general
approachability, made it easy to create complex scenes. As both
frameworks utilized object-oriented design patterns, expansion of
the frameworks required that programmers derive the platform’s
scene graph nodes to introduce new functionality not supported by
the base implementations.

As mentioned earlier, a common thread among these earlier sys-
tems is that their efforts are concentrated on bridging various low-
level RIS components such as scene graph, rendering, tracking,
I/O (i.e. displays, peripherals, etc.), and networking. More re-
cently, Unity [18], a modern game engine with a large and active
game developer community, has become popular among AR/VR
researchers because (a) it supplies much of the core functionality
provided by earlier toolkits and frameworks out of the box (e.g.,
platform independence, scene graph, rendering, physics, and net-
working) and (b) it makes it easy to interface with various AR/VR-
related hardware and software (e.g., Oculus Rift, Leap Motion Con-
troller, and PTC Vuforia) through vendor-provided plug-ins.

A few AR/VR frameworks that have been published in recent
years (e.g., RUIS [17] and MiddleVR [9]) rely on Unity as a plat-
form, yet still focus on integrating VR/AR hardware and software
into a common framework. They provide an abstraction layer on
which developers can build immersive VR applications with spa-
tial interaction and stereoscopic 3D graphics, similar to some of the
earlier systems mentioned above.

In addition to integration-focused systems, there has been some
effort in providing a collection of reusable 3DUI elements. For
example, Figueroa and Castro [7] developed a library of reusable,
abstract, low granularity 3D selection and travel techniques that can
be combined to prototype novel 3D interaction techniques. Their
C++ implementation is built on top of VR Juggler [3], a modular
graphics and devices abstraction library for VR applications.

Some of the work in related areas extend scene graphs to in-
troduce logical connections between spatially disconnected scene
elements. One example is the Virtual Manufacturing Lattice [1],
which augmented a scene graph to support applications in virtual
manufacturing. By including precedence relationships and object
state at the node level, it enabled enforcing rules in virtual assem-
bly planning and prohibiting execution of infeasible operations.

Our work on WF Toolkit builds on these concepts, yet differs
in the following significant ways: We focus on providing program-
mers with a flexible yet powerful framework that allows them to
define and implement a custom interface for modular, interchange-

able widgets. Our framework’s component-based design and Unity
implementation allow easy drag-and-drop instantiation and flexi-
bility for extension when required. A set of widgets that are im-
plemented using WF Toolkit can easily be combined together to
build full-featured user interfaces and can be administered through
a common managing entity that is agnostic to the specific widgets
it has to manage. Our framework is independent of the composi-
tion of the underlying hardware and software physical setup (e.g.,
displays and tracking). In fact, our Unity implementation can po-
tentially be used in conjunction with other Unity-based frameworks
that focus on integration. The background for our framework’s evo-
lution and the design decisions that underlie it are described in the
next section.

3 WF TOOLKIT

To support the creation of modular, reusable widgets within a
component-based game engine such as Unity, WF Toolkit provides:

1. A component-based framework to streamline the creation of
modular widgets by implementing a simple interface and
adding a drag-and-drop component for handling communica-
tion among widgets.

2. A management module for these widgets that can work on
both local and networked configurations.

3. Tools for rapid prototyping and user testing of systems that
include these modular widgets.

In the following section, we describe our implementation of this
toolkit in the Unity game engine (Figure 1). In Unity, the scene
graph or scene hierarchy is referred to as the Hierarchy and pre-
sented in the Unity Editor Hierarchy window. The components de-
scribed in the following sections refer to Unity components, whose
instances are attached to GOs. Unity components are classes that
inherit from a base class, MonoBehaviour, which defines functions
for hooking into the standard game initialization and update loop.
As C# classes, components can implement interfaces and be sub-
classed (i.e., inherited from).

3.1 Design
WF Toolkit was designed during the development of software for a
3D rotation-guidance study [5] that compared different widgets for
guiding a user in rotating a tracked object to a desired 3D orienta-
tion. Initially, a team of programmers developed several widgets in
parallel across different Unity projects. When it was time to inte-
grate those projects into a single user-study–management system,
it proved to be a difficult engineering challenge. In Unity, access
to GOs and their components is simplified through convenient util-
ities provided by Unity itself. However, managing which GOs to
activate at a specific time and calling functions defined within their
components is left to the programmer.

As our widgets started growing more complex, they began to
span multiple component scripts across multiple GOs. Generally,
these GOs were grouped together in the Unity scene hierarchy as
children of the main widget GO, but we also encountered cases
in which sub-GOs were spatially independent of the main GO and
therefore could not be children of it. One example is when a 3D
widget has a 2D UI element associated with it. Following the Unity
UI guidelines, 2D UI elements should be children of a separate can-
vas GO. Such instances required each of our widgets to maintain
a list of their associated GOs and call specific functions on them
when they received function calls from an upstream managing en-
tity. For example, we found ourselves replicating the functionality
of the Unity SetActive() function. Normally, when SetActive() is in-
voked on a GO, it will automatically enable or disable all attached



components and their children. However, since we had created wid-
gets that span disparate hierarchies, a single invocation of Unity’s
SetActive() was not enough to activate or deactivate all related GOs.
Thus, we needed to explicitly manage the SetActive() of each asso-
ciated GO.

Additionally, we wanted to create compound widgets by reusing
other simpler widgets as building blocks. Hooks to those lower-
level widgets again needed to be explicitly managed by the higher-
level widgets that included them as building blocks. For exam-
ple, we wanted to share among different widgets a camera con-
troller that accessed the main camera in the scene, transformed it
to a new pose when each widget was activated, and then returned
the camera to its original pose once that widget was deactivated.
To follow Unity’s component-based architecture, we initially cre-
ated a separate camera controlling script that could be attached to
multiple widgets as a component. However, even then we found
ourselves placing repetitive code inside the widgets themselves to
handle (e.g., initialize and activate) this camera-control behavior.

When we started considering how to encapsulate common fea-
tures between widgets, we encountered an additional problem. Fol-
lowing a standard object-oriented model, we could have placed the
needed behavior in a base class from which all widgets would de-
rive. This would have solved the problems of providing common
functionality, and of accessing behaviorally-related items through
a single type. However, one of the common problems encountered
in object-oriented patterns poses a difficult problem here. Widgets
that are designed in different pipelines, and have undergone exten-
sive development, required major refactoring to extend a common
base class. Another possibility was to define an interface that as-
sociated components would implement. This allowed for common
access (through an interface handle) but did not support an inter-
nal data structure that could be used to group components together.
So we needed a way to allow programmers to develop widgets in
their own pipelines, but take advantage of shared functionality and a
common handle that could be used to get access to all related items.

To summarize, we needed a design that would allow us to:

1. Provide a common type that a managing entity could use to
access all widgets (potentially hierarchically) without know-
ing the details of their startup, update, or other internal behav-
ior.

2. Specify nonspatial hierarchies that a programmer could use to
get access to GOs and component scripts comprising a widget.

3. Encapsulate behavior that some or all widgets share, without
forcing the programmer to redesign their class structure.

4. Allow components to be reused by potentially diverse wid-
gets.

To fulfill these requirements, we created the Widget Framework
and developed WF Node, a component that can be added to GOs,
providing a common hook to be used by a managing entity. We
also developed the IWFBehavior interface, a simple interface that
programmers can implement; this allows scripts to react to calls
from WF Nodes, which pass along calls from the managing entity.

3.2 Widget Framework
The core of our toolkit is the Widget Framework. The Widget
Framework is a collection of components (Figure 2) that a pro-
grammer can attach to GOs to create modular widgets that can be
managed through a common interface.

3.2.1 IWFBehavior
The behavior of individual widgets is defined in components that
implement the IWFBehavior interface. There are five core behav-
ior functions defined in IWFBehavior: Initialize(), Activate(), Up-
date(), Reset(), and Destroy(). Initialize() is run when the widget is

Unity Game Engine

Scene Hierarchy

WFNode IWFBehavior

User
Study
Module

Support
Library &
Utilities

WFBundle

WFManager

Core Libraries
(Math, Rendering, Networking, etc.)

Plug-Ins
(Rift, Vuforia, Leap, etc.)

WF Toolkit

Widget Framework

Unity 3rd partyWF Toolkit

Figure 1: Widget Toolkit modules are layered on top of the Unity
scene hierarchy. Interfacing with third-party hardware and software
is established through plug-ins.

loaded. Activate() has a boolean toggle as an argument to turn the
widget on or off. Reset() reinitializes the widget to its initial state
and Destroy() removes the widget and its associated GO from the
scene for garbage collection. Update() gets called every frame and
is where the programmer specifies the widget behavior. Individual
widgets are typically unaware of their siblings or children. The hi-
erarchical setup is handled by the framework through the WFNode
component.

3.2.2 WFNode
WFNode is a bridge between the main program, individual widgets,
and their children. Each widget bundle has a WFNode component
attached to its main GO. WFNodes can contain a list of children
(i.e., references to other WFNodes), which allows for the creation
of a WFNode hierarchy. As long as the main program has handles
to each widget bundle in the scene (this can be managed through a
manager component, WFManager), the framework does not require
that a root WFNode be specified for the entire scene. WFNodes do
not contain any widget-specific logic or behavior—all logic and be-
havior is contained in components that implement the IWFBehavior
interface. WFNodes may contain multiple IWFBehaviors to achieve
complex behavior.

To be able to function as a bridge, WFNode has implementations
of the same behavior functions defined in IWFBehavior: Initial-
ize(), Activate(), Update(), Reset(), and Destroy(). In a WFNode,
each of these functions does two things: call the implementations
of the function for each attached IWFBehavior, and pass the call
on to its children (i.e., other WFNodes). WFNodes also contain
utility functions to get a handle to the WFNode attached to a GO.
These utility functions can streamline development, allowing the
programmer to use the Unity Editor’s drag-and-drop functionality
to drop GOs with IWFBehavior components onto designated spots
in the WFNode’s inspector window. To summarize, all a program-
mer needs to do to integrate with the widget framework is to add a
WFNode to a GO in the scene hierarchy and implement the neces-
sary specialty functions defined in the IWFBehavior interface.

To further streamline development, we provide a default imple-
mentation of the interface that includes basic behavior such as tog-
gling the visibility of a GO or removing it from the scene. This al-
lows the programmer to focus on core functionality and write code
only when more advanced functionality is required.

The functions declared in the IWFBehavior interface are invoked
by a managing entity through WFNodes and provide functionality



that is not possible by relying only on Unity’s built in functions.
An example of this is initializing IWFBehaviors. A parameter to a
IWFBehavior may be computed in the managing entity’s Awake(),
which may not have run by the time IWFBehavior’s own Awake()
is called. Normally, the solution would be to move the initializa-
tion logic of the IWFBehavior from Awake() to Start(), so that it
can safely be called after all Awake()s have been called. However,
it is possible (which we encountered ourselves during the develop-
ment of our rotation-guidance user study) that the managing entity’s
Start() may run first and try to reference a value that gets initialized
in a IWFBehavior’s Start().

Our solution is to utilize the IWFBehavior Initialize() function,
which the managing entity can call explicitly at a specific time (e.g.,
after all Awake()s, but before any Start()s). While it is possible and
recommended in some situations to explicitly set the script execu-
tion order in Unity directly, defining a common initialization point
in the framework is helpful for promoting standardization and in-
terchangeability between various IWFBehavior implementations.

The Activate() function serves a critical role in the base frame-
work. WFNode’s Activate() function will iterate over all attached
IWFBehaviors and all its own children. This allows the program-
mer to activate associated widgets (that may or may not be linked
in the scene hierarchy) without any work in the IWFBehavior im-
plementations. This both simplifies usage of the system and pre-
vents errors when implementing the IWFBehavior interface. The
programmer may simply place a Unity SetActive() in that function
(allowing activation of all elements of the system), or may specify
additional behavior that should occur before or after the IWFBe-
havior implementation is activated or deactivated. This becomes
especially powerful in networked configurations in which synchro-
nization and bandwidth conservation are important. The Activate()
function can be triggered remotely, allowing for an extremely sim-
ple network synchronization of active states, without the need to
turn all associated components into derivations of the Unity Net-
workBehaviour class.

3.2.3 WFBundle

Together, a WFNode and the associated IWFBehavior implemen-
tations form a WFBundle. A WFBundle is a logical hierarchy that
connects components that may be contained in multiple GOs across
the scene hierarchy. To a managing entity, the WFNode is the entry
point to a WFBundle. As a WFNode can point to multiple IWF-
Behavior implementations (within a single GO or across multiple
GOs), as well as other WFNodes (which must be in different GOs),
WFBundles can grow wide and deep. This allows for complex,
multi-tiered widgets and interactions.

In our Unity implementation, WFBundles are prepared in one of
three ways: completely in code, through the composition of GOs
and component scripts at runtime, or through use of Unity Prefabs.
Prefabs allow a programmer to save a sub-hierarchy (i.e., portion of
the scene hierarchy), including component scripts attached to GOs
and variable settings set through the Unity Inspector panel. While
Prefabs facilitate the creation and deployment of WFBundles, they
do not allow for automatic connection to external components (i.e.,
components outside of the Prefab’s sub-hierarchy). While it is pos-
sible to connect to certain component instances in script, this is usu-
ally only possible for Unity-provided components, globally visible
and static components, and components attached to GOs known to
the calling component. To connect to components outside of the
sub-hierarchy, the programmer can use the WFManager to specify
relationships formed at runtime.

3.2.4 WFManager

WFManager is not a required component; however, without a man-
aging entity that can bridge and control multiple, unrelated WFBun-
dles, their utility is limited and the programmer must then manage

UnityEngine

VisualizationFramework

SampleProject

children
0..*

components

0..*

children
0..*

behaviors
1..*

wfNodes 1..*

GameObject

transform : Transform
...

...

MonoBehaviour

...

Start() : void
Awake() : void
Update() : void
Destroy() : void
...

WFNode

...

Initialize() : void
Reset() : void
Update() : void
Activate(t : bool) : void
Destroy() : void
...

«interface»
IWFBehavior

OnInitialize : event
OnComplete : event

Initialize() : void
Reset() : void
Update() : void
Activate(t : bool) : void
Destroy() : void

WFManager

fsm : FSM<WFNode>
...

TransitionTo(s : string) : void
RefreshCurrent() : void
ActivateCurrent(t : bool) : void

FSM

states : T[1..*]
current : T

TransitionTo
(s : T) : void

T

SampleWFManager

...

TransitionTo(s : string) : void
RefreshCurrent() : void
ActivateCurrent(t : bool) : void

BaseWidgetBehavior

...

Initialize() : void
Reset() : void
Update() : void
Activate(t : bool) : void
Destroy() : void

SampleWidgetA

...

Initialize() : void
Reset() : void
Update() : void

SampleWidgetB

...

Initialize() : void
Reset() : void
Update() : void

Figure 2: Simplified UML class diagram showing inheritance and
containment relationships among Widget Framework items (WFN-
ode, IWFBehavior, and WFManager), as well as downstream inheri-
tance relationships for a sample project that uses the Widget Frame-
work.

the WFBundles manually. Thus, we provide an extendible manag-
ing component, the WFManager, that handles all registered WF-
Bundles in the scene and can call the WFNode specialty functions
on active WFNodes. It is possible to have multiple WFManagers
within a single application instance. Our toolkit also provides a
networked WFManager module that makes it easy for programmers
to synchronize WFNode hierarchies over a network. In our Unity
implementation, networked WFNodes and WFManagers communi-
cate through the Unity UNET system.



We represent the collection of WFNodes in a WFManager as a
finite state machine (FSM), where each state is a WFNode. The
entry and exit procedures for each state automatically handle each
WFNode’s active state. Further, the entry and exit behaviors can
be expanded to customize transitions between WFNodes. The data
structure can also be changed to match the programmer’s needs.

3.3 WUSM
WFNode and the WFManager are the foundation for an extendible
and reusable user-study module, the Widget User-Study Manager
(WUSM). Since the programmer’s widget components are handled
by WFManagers in the scene, the WUSM primarily supports load-
ing and saving study data, study-trial management, and study flow.
The WUSM references a user-study–state manager, which inter-
nally uses a FSM to represent the state of the user study. Like the
WFManager’s state machine, the programmer can specify the state
entrance and exit behaviors to customize transitions between user-
study states.

In the WUSM, WTrials are objects that contain data relevant to
a particular study trial. WTrials reference WTasks, which are ob-
jects that contain their own update loop, initialization function, and
optionally, completion information. WTasks run independently of
the calling widget (potentially across multiple application instances
and network hosts), and can identify when a task has been com-
pleted. Further, each WTask object contains a list of WTask refer-
ences, which can be useful when trying to create compound tasks,
as in some assembly scenarios.

4 USE CASE

As mentioned earlier, our toolkit was used to develop a system to
guide users in rotating a tracked object to a destination 3DOF orien-
tation in AR/VR, building on our earlier work [5]. For example, one
widget we developed uses multiple 3D arrows to show the rotation
(Figure 4a), while an alternative widget animates a semi-transparent
replica of the tracked object (Figure 4b). Since these widgets did
not share a base implementation, and the requirements for operat-
ing the widgets were very different, we needed a common interface
for managing, testing, and deploying the interfaces.

In Unity, the WFBundles that represent the arrow-based and
animation widgets are created through a collection of Unity GO
components. The components are brought together and managed
through derivations of the base class that implements IWFBehavior
as described above, which are then added to GOs in the Unity scene
hierarchy. A WFNode is added to the same GO. All widgets to be
tested are added to a list in the WFManager, also present in the
scene hierarchy. The complexity of managing multiple behaviors is
hidden from the programmer through use of a WFManager and its
connections to WFBundles through WFNodes, which automatically
pass messages onto downstream IWFBehaviors.

In the example scene hierarchy shown in Figure 3, Arrow and
Animation WFBundles are controlled by a WFManager. When the
WFManager makes WFNode function calls, those calls are passed
on to the IWFBehavior components attached to each WFBundle. In
the case of the Animation WFBundle, there are three IWFBehav-
iors: Animation, Camera, and Placement. The end effect of this
set-up is that when the Animation WFBundle is activated, the cam-
era is placed at a specific offset from a virtual object, a replica of
the virtual object is placed next to it, and the replica animates along
a motion path specified by the programmer inside the Animation
behavior.

Without the Widget Framework, programmers would need to ex-
plicitly connect the widgets in code, or bundle them into prefabs
using the Unity Editor. (Note that bundling GOs into prefabs does
not work for GOs that are associated together but are spatially in-
dependent.) Further, if the Camera behavior and Placement behav-
ior are added to higher-level widgets as sub-widgets, our Widget

Figure 3: Simplified scene hierarchy from a sample project with two
WFBundles: Arrow and Animation. WFBundles are controlled by the
WFManager, which accesses the WFBundles through their WFNode.
Animation is a composite WFBundle and contains three IWFBehav-
iors: Animation, Camera, and Placement.

Framework not only allows defining those relationships by a single
drag-and-drop operation, but it also automatically registers them
to receive function calls from higher-level entities, which the pro-
grammer would need to carefully and tediously manage within each
high-level widget without the help of our framework.

During the prototyping phase, widgets are managed through the
Widget Test Manager, which references a networked WFManager.
The Widget Test Manager handles scene initialization and widget
iteration through the Unity Input module, since the WFManager
manages the WFBundles and directly instantiates WFNodes and
IWFBehavior implementations through instantiation of GOs and/or
Prefabs.



(a)

(b)

Figure 4: Sample widgets from a project that is built using WF Toolkit
to guide users in rotating a shape by showing: (a) Circular arrows
oriented about a single axis. (b) An animated representation of the
rotation between the current and final poses overlaid on the tracked
object.

When the WFBundles are ready, the WFManager used during
development is simply loaded into a WUSM in a GO in the scene
hierarchy. In a user study, when a widget is needed for a trial, the
WUSM requests a widget change from the WFManager. The WF-
Manager uses the same WFBundles regardless of whether the call-
ing component is a WUSM or a Widget Test Manager. In the case
of the Arrow WFBundle, arrow shape and material, and widget be-
havior are defined during the development phase, and saved to the
WFBundle GO/Prefab, which is then directly used in the WFMan-
ager initialization process.

When the application starts, the WFManager will iterate through
its list of registered widget GOs or Prefabs and instantiate new wid-
gets in the scene. During initialization, the WFManager will cre-
ate states for each WFNode to add to the widget FSM described
above. The application-specific initial state will be loaded and then
the WFManager will iterate over all other WFNodes to disable the
registered widgets.

As the user study progresses between trials, or when a user man-
ually triggers a change, the WFManager will invoke the Deacti-
vate() function on the current WFNode (which will in turn call
all associated IWFBehavior Deactivate() functions) to disable that
widget, and will then invoke the Activate() function on the next
WFNode to enable it. If the programmer has specified that the set-
tings of a widget must be refreshed, the WFManager can invoke
the WFNode Refresh() function, which will again call all associated
IWFBehavior Refresh() functions. Initialize() and Destroy() work
similarly. In each case, the programmer specifies how a widget will
operate when the respective IWFBehavior function is invoked by
the associated WFNode.

5 CONCLUSIONS AND FUTURE WORK

We have presented the design and implementation of WF Toolkit,
a flexible and extensible component-based framework that allows
for the streamlined development and rapid deployment of modular,
reusable widgets. Our framework is designed to connect widgets
into bundles, all of which are administered by a single managing
script. In addition, WF Toolkit includes a networked implemen-
tation of this manager for distributed and multi-user scenarios, as
well as a module that facilitates user testing. We demonstrated the
advantages of WF Toolkit through a use case, in which we imple-
mented different widgets for rotation guidance in AR/VR scenarios.
We intend to release the Unity implementation of the framework to
the general public and to move the toolkit into an open-source de-
velopment pipeline, to further expand its capabilities.

Going forward, we hope to specify broadcast and messaging pro-
tocols for use with WFNodes, to provide an alternative to inter-node
communication. We would also like to introduce search and reor-
ganization capabilities to WFNodes, to allow for simple reorgani-
zation of hierarchies. In addition, we plan on releasing a library
of low-level widgets such as arrow, highlighter, and animator, that
can be used as building blocks to design novel widgets. We envi-
sion that different widgets that serve the same purpose would im-
plement a common interface. This would allow programmers to
release novel alternative widgets, and other programmers to inte-
grate those new widgets into their projects, swapping their existing
widgets with new ones in a plug-and-play fashion.

ACKNOWLEDGEMENTS

This research was funded in part by National Science Foundation
Grant IIS-1514429.

REFERENCES

[1] A. Banerjee and P. Banerjee. A Behavioral Scene Graph for Rule En-
forcement in Interactive Virtual Assembly Sequence Planning. Com-
put Ind, 42(2-3):147–157, 2000.

[2] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riss, C. Sandor, and M. Wagner. Design of a component-based aug-
mented reality framework. In Proc. IEEE ISAR, pages 45–54, 2001.

[3] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. VR Juggler: A Virtual Platform for Virtual Reality Application
Development. In Proc. IEEE VR, pages 89–96, 2001.

[4] J.-Y. Didier, M. Chouiten, M. Mallem, and S. Otmane. ARCS: A
framework with extended software integration capabilities to build
Augmented Reality applications. In Proc. IEEE VR Workshop on
SEARIS, pages 60–67, 2012.

[5] C. Elvezio, M. Sukan, S. Feiner, and B. Tversky. [POSTER] Inter-
active Visualizations for Monoscopic Eyewear to Assist in Manually
Orienting Objects in 3D. In Proc. IEEE ISMAR, pages 180–181, 2015.

[6] S. Feiner, B. MacIntyre, T. Hllerer, and A. Webster. A touring ma-
chine: Prototyping 3D mobile augmented reality systems for explor-
ing the urban environment. In Proc. IEEE ISWC, pages 74–81, 1997.

[7] P. Figueroa and D. Castro. A reusable library of 3D interaction tech-
niques. In Proc. IEEE 3DUI, pages 3–10, 2011.

[8] M. Gervautz, D. Schmalstieg, Z. Szalavri, K. Karner, F. Madritsch,
and A. Pinz. Studierstube- A Multi-User Augmented Reality Envi-
ronment for Visualization and Education. Technical report TR-186-2-
96-10, Institute of Computer Graphics, TU Vienna, 1996.

[9] S. Kuntz. MiddleVR. http://www.middlevr.com.
[10] B. MacIntyre and S. Feiner. Language-level Support for Exploratory

Programming of Distributed Virtual Environments. In Proc. ACM
UIST, pages 83–94, 1996.

[11] R. Nystrom. Game Programming Patterns. Genever Benning, 1 edi-
tion edition, 2014.

[12] O. Oda and S. Feiner. Goblin XNA Framework. http://
goblinxna.codeplex.com/.

[13] J. Ohlenburg, I. Herbst, I. Lindt, T. Frhlich, and W. Broll. The MOR-
GAN framework: enabling dynamic multi-user AR and VR projects.
In Proc. ACM VRST, pages 166–169, 2004.



[14] G. Reitmayr and D. Schmalstieg. A wearable 3D augmented reality
workspace. In Proc. IEEE ISWC, pages 165–166, 2001.

[15] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavri, L. M. Encar-
nao, M. Gervautz, and W. Purgathofer. The Studierstube Augmented
Reality Project. Presence Teleoper Virtual Env., 11(1):33–54, 2002.

[16] P. S. Strauss and R. Carey. An Object-oriented 3D Graphics Toolkit.
Proc. ACM SIGGRAPH, 26(2):341–349, 1992.

[17] T. M. Takala. RUIS: A Toolkit for Developing Virtual Reality Appli-
cations with Spatial Interaction. In Proc. ACM SUI, pages 94–103,
2014.

[18] Unity Technologies. Unity Game Engine. http://unity3d.com.
[19] P. D. Varcholik, J. J. LaViola , Jr., and C. Hughes. The Bespoke 3DUI

XNA Framework: A Low-cost Platform for Prototyping 3D Spatial
Interfaces in Video Games. In Proc. ACM SIGGRAPH Symposium on
Video Games, Sandbox ’09, pages 55–61, 2009.

[20] D. Wagner and D. Schmalstieg. First steps towards handheld aug-
mented reality. In Proc. IEEE ISWC, pages 127–135, 2003.

[21] Wikipedia. Entity component system. https://en.wikipedia.
org/wiki/Entity_component_system.

[22] Wikipedia. Microsoft XNA. https://en.wikipedia.org/w/
index.php?title=Microsoft_XNA.


